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Abstract—Modern computing workloads, particularly in Al
and edge applications, demand hardware-software co-design to
meet aggressive performance and energy targets. Such co-design
benefits from open and agile platforms that replace closed,
vertically integrated development with modular, community-
driven ecosystems. Coarse-Grained Reconfigurable Architectures
(CGRAs), with their unique balance of flexibility and efficiency,
are particularly well-suited for this paradigm. When built on
open-source hardware generators and software toolchains, CGRAs
provide a compelling foundation for architectural exploration,
cross-layer optimization, and real-world deployment.

In this paper, we will present an open CGRA ecosystem that we
have developed to support agile innovation across the stack. Our
contributions include HyCUBE, a CGRA with a reconfigurable
single-cycle multi-hop interconnect for efficient data movement;
PACE, which embeds a power-efficient HyCUBE within a RISC-V
SoC targeting edge computing; and Morpher, a fully open-source,
architecture-adaptive CGRA design framework that supports
design space exploration, compilation, simulation, and validation.
By embracing openness at every layer, we aim to lower barriers
to innovation, enable reproducible research, and demonstrate how
CGRAs can anchor the next wave of agile hardware development.
We will conclude with a call for a unified abstraction layer for
CGRAs and spatial accelerators, one that decouples hardware
specialization from software development. Such a representation
would unlock architectural portability, compiler innovation, and
a scalable, open foundation for spatial computing.

Index Terms—CGRAs, Spatial computing, Reconfigurability

I. INTRODUCTION

Modern workloads spanning large-scale deep learning in-
ference (from convolutional neural networks in vision to
transformer-based language models), real-time sensor process-
ing in autonomous systems, and ultra-low-power analytics at the
edge demand a unique combination of high throughput, tight la-
tency bounds, and extreme energy efficiency (performance-per-
watt) that general-purpose processors cannot deliver. Domain-
specific accelerators (DSAs) have emerged as an efficient
solution for such workloads and are now pervasive in modern
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SoCs [33]; for instance, Shao et al. [35] report that Apple’s
SoCs have grown from 10 DSAs in the A4 to over 40 in the
A12. However, such specialization leads to dark silicon, as
many DSAs remain underutilized across diverse workloads.
These applications also exhibit varied computational patterns
from dense linear algebra to irregular, data-dependent kernels
each requiring distinct dataflows and memory access strategies.
Existing ecosystems are siloed: The prevailing hardware-
software stacks remain tightly coupled and closed, limiting
the flexibility and adaptability required for modern workloads.
Commercial GPUs (e.g., NVIDIA’s CUDA-driven ecosystem
with cuDNN and TensorRT), domain-specific ASICs (e.g.,
Google’s TPU with XLA/TensorFlow integration), FPGA-based
dataflow (e.g., Maxeler’s proprietary MaxCompiler and run-
time), and adaptive compute platforms (e.g., AMD’s Versal
ACAP with Vitis Al DPU IP) all represent monolithic,
vendor-controlled ecosystems. Supporting the diversity in
applications is challenging for fixed-function accelerators.
While GPUs and ASICs deliver high throughput and low
latency for specific workloads, they limit architectural flexibility,
offer closed compilers and rigid execution models, and restrict
access to micro-architectural details. FPGA-based platforms
offer fine-grained reconfiguration, but still face barriers such as
long compilation times due to gate-level synthesis/bit-level re-
configuration and reliance on vendor-specific toolchains. Across
all these platforms, inflexible integration and closed-source
compilation flows hide critical micro-architectural behavior,
hinder third-party compiler innovations, and lock developers
into a single vendor’s framework. Consequently, architectural
exploration is stifled, cross-platform portability is hindered,
and tool fragmentation presents hurdles to reproducible,
community-driven research. This dynamic elevates vendors to
first-class citizens and forces engineers to conform to predefined
application profiles. It also amplifies the “hardware lottery” [16]
effect by limiting novel research to the narrow subset of ideas
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Fig. 1: CGRA Taxonomy.

compatible with existing hardware.

Why Open and Modular platforms? Open and modular
ecosystems decouple architectural innovation from monolithic
toolchains by offering well-defined interfaces such as an
architecture description language (ADL) that allows rapid
customization of instruction sets or micro-architectural compo-
nents without re-engineering the entire compiler stack. These
abstractions let hardware architects, compiler developers, and
software engineers to work independently, enabling quick and
iterative experimentation and validation of new scheduling
heuristics, memory hierarchies, or micro-architectural blocks.
Configurable platforms shorten this feedback loop by turning
infrastructure tweaks or new workload adoption with mea-
surable performance or power gains within hours rather than
weeks. This modularity reduces dependence on proprietary
toolchains, democratizes hardware-software co-design, and
fosters a vibrant, community-driven innovation cycle.

Contributions: In our efforts, we develop and provide
an open, modular platform, Morpher [10], that lowers the
barrier to CGRA innovation and exploration. Morpher allows
researchers to quickly describe new CGRA architectures,
compile real applications to them, and validate behavior and
evaluate performance. It standardizes the interface between
the architecture and compiler, allowing new compositions of
processing elements, interconnects, or memory layouts to be
explored without rebuilding the toolchain. This enables designs
to move from idea to simulation and then to silicon with
lowered non-recurring engineering costs. We designed and
fabricated open-source HyCUBE CGRA [41] and PACE SoC
with CGRA [25]. We release the framework, configurations,
and benchmarks to enable fair, reproducible comparisons across
dataflow architectures and to enable further research and
iteration over our existing work.

II. BACKGROUND

CGRAs are arrays of programmable processing elements
(PEs), each comprising an arithmetic logic unit, a router, and
local reconfiguration memory, interconnected by a configurable
fabric that maps high-level dataflow graphs at instruction
granularity. Data moves between a shared scratchpad memory
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TABLE I: Dataflow architectures classified within the CGRA
taxonomy. Accelerators often fall under the umbrella of spatial
dataflow architectures albeit with minimal reconfiguration.

and the PE array for execution, and results return to the
scratchpad on completion. Unlike FPGAs, which configure
lookup tables and wires at bit-level to implement arbitrary
logic, or domain-specific accelerators, which hard-wire design
for specific narrow set of kernels, CGRAs configure functional
units and network paths to flexibly support a broad range of
workloads with near-ASIC efficiency.

There has been extensive exploration of CGRA architectures
from both commercial and academic groups. To organize the
design space, we introduce a taxonomy as shown in Fig. 1. The
vertical axis contrasts homogeneous arrays of identical PEs with
heterogeneous fabrics of specialized units, and the horizontal
axis spans spatial mappings (where each operation occupies a
PE for its full execution) to spatio-temporal schedules that
time multiplex operations across PEs. In the spatial case,
the entire DFG can fit onto the CGRA resources without
time multiplexing. If the DFG does not fit, the loop body is
split into subgraphs, completing all iterations of one subgraph
before moving to the next. In the spatio-temporal case, the
DFG is mapped across space and time, reconfiguring PEs and
interconnects every cycle. Homogeneous arrays are simpler
to place and route, while heterogeneous arrays can be more
area and energy efficient for matched kernels but are harder to
schedule. Overall complexity increases from top left to bottom
right.

In Table I, each quadrant includes representative CGRA
designs. Moreover, whereas most CGRAs rely on static routing
determined at compile time, architectures such as MTIA [7],
Nexus Machine [17], Canon [3] support dynamic routing for
reconfiguring data paths at runtime, accommodating irregular
communication patterns for sparse and graph workloads,
enhancing adaptability.

Several open-source CGRA frameworks have been proposed
that support modeling, mapping, and evaluation across these fea-
tures, including CGRA-ME [30], Pillars [15], OpenCGRA [38],
and CCF [9]. CGRA-ME provides compiler and RTL for
traditional spatio-temporal homogeneous CGRAs but targets
simple kernels, lacks control divergence, and only partly han-
dles recurrences; it also omits detailed memory modeling and
has no open-source simulator. Pillars adds a Scala description,
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automatic RTL, and cycle-accurate simulation, but uses CGRA-
ME as its frontend and inherit those limitations. OpenCGRA
and CCF support control divergence and recurrences, yet
their mappers are not architecture adaptive and often need
code changes to retarget new interconnects or PE layouts.
OpenCGRA’s simulator rely on user-written test benches and
do not automate test data generation or end-to-end checks.
Morpher is open source and automated. It compiles real
kernels with control divergence and recurrences, models custom
interconnects and memory systems, and uses an architecture-
adaptive mapper. It integrates LLVM-based DFG generation and
data layout and often yields lower II and faster compile times. It
also includes cycle-accurate simulation and automated checking,
removing manual benches. Table I compares these frameworks
across control, recurrences, adaptivity, interconnects, memory
modeling, simulation and validation, and RTL readiness. To
our knowledge, it is the only open-source CGRA framework
validated end-to-end on fabricated silicon.

III. OPEN CGRA INFRASTRCTURE

Building on the need for a unified, extensible CGRA
toolchain, we have developed Morpher, an open-source,
end-to-end CGRA framework that automates architecture
generation, mapping, simulation, and validation for both
homogeneous and heterogeneous designs. Leveraging Mor-
pher, we have taped out HyCUBE, an 4x4 CGRA featuring
a reconfigurable single-cycle, multi-hop mesh that delivers
state-of-the-art energy efficiency and throughput, and PACE,
a modular RISC-V edge SoC embedding a 8x8 HyCUBE
alongside a memory hierarchy and bus interfaces. These
silicon prototypes demonstrate Morpher’s capability to drive
rapid hardware-software co-design. The modular structure of
Morpher has also led to the development of several novel
CGRA architectures, each reusing certain components from
Morpher while adding new components to match their own
architectural needs.

A. Morpher

Fig. 2 illustrates Morpher’s end-to-end flow, structured into
three main phases. In the Architectural Specification &
Data-Flow Extraction phase, Morpher takes as input @
application source code annotated with the target kernel, (2)
an ADL description of the CGRA, and @ a library of Chisel
hardware primitives. It then generates the Data-Flow Graph

'From Morpher [10].

Fig. 2: Morpher framework!

and scratchpad memory layout ((4)) and produces test vectors
(@) for validation. Next, the CGRA Mapping phase maps the
extracted DFG onto the CGRA fabric to maximize parallelism
by exploiting intra- and inter-iteration parallelism with software
pipelining (i.e., modulo scheduling) [31], and output compute
and routing configurations. Finally, in the RTL Generation &
Verification phase, the Hardware Generator (@) uses the ADL
model to produce Verilog RTL, which the Simulation/Emulation
stage () drives with the test vectors to verify functional
correctness and collect area and power estimates.
1) Architectural Specification & Data-Flow Extraction

"PE_B":{
"INPUTS”: ["WI', "EI"],
"OUTPUTS": ["WO", "EO"]

"PE_A":{
"INPUTS": ["WI", "EI'],
"OUTPUTS": ['WO", "EQ"]

"SUBMODS": "SUBMODS":
{ , { )
{ } { }

"CONNECTIONS™: "CONNECTIONS”:

"THIS.EI": ["FUO.11", "FUO.12", "FUO.P", "RFO.WP"],
"THIS.WI": ["FUO0.11", "FUO0.12", "FUO0.P", "RFO.WP"],
"RFO0.RPOQ": ["THIS.EQ", "THIS.WO"] }

"THIS.EI": ["FUO0.11", "FUO0.12", "FU0.P", "RFO.WP"],
"THIS.WI": ["FUO.I1", "FUO.12", "FUO.P", "RF0.WP"],
"RF0.RPO": ['THIS.EQ", "THIS.WO"] }
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"CONNECTIONS": [
{"FROM":"EAST_Q", "TO":"X+1,Y", "PORT":"WEST_I"},
{"FROM":"WEST_O", "TO":"X-1, Y", "PORT":"EAST_I"}]

PE_A
Fig. 3: Example of Morpher ADL for a heterogeneous CGRA
with two processing elements. Internal connections of primitive
modules (RF, FU) are omitted for simplicity.

PE_B

Architectural Description Language (ADL): Morpher’s
ADL provides a concise yet expressive syntax for describing ar-
bitrary CGRA architectures by defining three core abstractions:
Modules (hardware blocks such as processing elements (PEs),
register files, and memories), Ports (interfaces for connecting
producers and consumers), and Connections (interconnect
wiring between Ports, including single-cycle, multi-hop links).
Generally, all CGRAs can be described by hierarchically
structuring the three Morpher ADL’s primitive modules: Func-
tional Units (FU), Register Files (RFs), and Memory Units
(MU). Multiplexers are are automatically inferred based on the
connections between ports. Fig. 3 illustrates this by showing
two heterogeneous PE instances, each composed of an FU
supporting different operations, an RF, and dedicated input and
output ports, linked together.

DFG and Data Layout Generation: Morpher’s compiler
frontend takes annotated C code as input and generates a



Dataflow Graph (DFG) as output. The C code can come directly
from the application or from DSLs like Triton [40] or TVM [6]
that can lower to C. Each node in the DFG represents a compute,
memory, or predication operation, and includes all relevant
metadata, ranging from the opcode and ASAP/ALAP hints for
scheduling, to the number of parent nodes and whether the
application exhibits any recursive behavior. Each node encodes
information about its parent and child nodes as metadata.
Depending on the memory access model supported by the target
architecture, the DFG generation can be tailored to produce
either on-array address computations or decoupled access-
execute style addressing, as in the stream-dataflow model [26]
with explicitly orchestrated scratchpad banks [28].

Once the DFG is constructed, Morpher also manages data
layout into the CGRA’s memory banks. For example, in a multi-
bank CGRA, it employs simple heuristics like round-robin
allocation to minimize contention and memory bank conflicts.
Finally, it emits a layout file that records base addresses for
arrays and fixed locations for scalars, embedding this address
metadata as constants into the corresponding DFG nodes. This
data-rich DFG is then passed to the mapper, which parses it
to schedule operations onto the actual CGRA fabric.

2) CGRA Mapping

The CGRA Mapper consumes the DFG and the architecture
description to generate mapping configurations that minimize
the initiation interval (II). II is defined as the number of
cycles between the start of consecutive loop iterations and
is constrained by resource availability and data dependencies.
Starting from the theoretical Minimum II (MII), computed
from resource availability and recurrence dependencies, the
mapper attempts scheduling with II=MII and increments II
until a feasible mapping is found. It first analyzes connectivity
constraints between MUs and FUs, annotating each FU with
the set of variables it can access. The DFG nodes are then
ordered topologically, with recurrence-cycle nodes prioritized
by cycle length. Each node is placed onto a space—time instance
of the corresponding FU in the Modulo Routing Resource
Graph (MRRG), and routed from its parent nodes using
Dijkstra’s shortest-path algorithm. Ports may be temporarily
oversubscribed to improve II convergence.

Once an initial mapping is obtained, the mapper resolves
oversubscriptions through one of three strategies: an adaptive
heuristic that increases the cost of overused ports (inspired by
SPR), a simulated annealing (SA) approach that perturbs node
placements along a cooling schedule, or a learning-induced
method (LISA) that leverages labels from a trained graph-neural
network. The process iterates until all resource conflicts are
eliminated. Morpher’s modular design makes it straightforward
to integrate new mapping algorithms, and future work will
extend hierarchical and heterogeneous mapping techniques to
improve scalability and support advanced CGRA topologies.

3) Simulation, RTL Generation & Verification

Morpher’s ADL is also integrated with a simulation infras-
tructure, where the simulator parses the ADL and models
the corresponding architecture. The simulator accepts the
same bitstream and memory layout of the mapped kernel as
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a prototype CGRA as the input. This setup enables rapid
evaluation of both performance and functional correctness of
the mappings produced by the compiler.

Finally, Morpher supports RTL generation from the input
JSON architecture file. For this, Morpher builds on Pillars [15],
utilizing its modular, Chisel-based infrastructure. The JSON
file is parsed to instantiate the appropriate Chisel modules,
which are then assembled into a complete hardware description
and compiled into RTL. This RTL serves as a useful first-
pass representation for early-stage area and power estimations,
and enables design-space exploration within the Pareto-optimal
envelope. However, additional effort is needed to refine this RTL
into a concrete and verified implementation suitable for eventual
tape-out. Morpher’s generated RTL currently supports out-of-
the-box FPGA emulation for minor variants of the HyCUBE
design. Fig. 4 shows the Morpher-based emulation of a CGRA
running a speech detection algorithm on an FPGA with sensors
and controlled by a CPU. Nevertheless, automatic generation
of valid RTL for arbitrary architectures remains dependent
on human intervention, as it is an open challenge in design
automation.

B. HyCUBE: CGRA with single-cycle multi-hop interconnects

Traditional CGRAs typically use neighbor-to-neighbor con-
nectivity, where each processing element (PE) can only send
data to its immediate north, south, east, or west neighbor.
While this keeps the interconnect simple, it severely limits
communication flexibility. If an operation needs to send data
to a PE more than one hop away, the data must be routed
through multiple intermediate PEs, one hop per cycle. These
intermediate PEs are congested for routing, even though they’re
not performing any computation, effectively reducing the
available compute parallelism. This type of routing increases
the II. Fig. 5(c) illustrates a small loop kernel whose DFG is
mapped onto a 2x2 N2N CGRA. Operation n/ is scheduled
on tile FO in cycle 0. Its dependents (n2, n3, n5, n6) are
scheduled over the next few cycles. Due to limited connectivity,
the compiler uses F1 and F2 to route the output of n/ to other
PEs. This increases routing pressure, extends the schedule to
three cycles per iteration (Il = 3), and leaves fewer PEs for
actual computation.

2Adapted from HyCUBE [18].
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In contrast, HyCUBE, shown in Fig. 5(d), introduces a
compiler-scheduled, reconfigurable interconnect capable of
single-cycle, multi-hop communication. Using clockless re-
peaters and statically configured crossbars, HyCUBE allows
the compiler to set up paths that traverse multiple hops in a
single cycle without occupying intermediate PEs. In the same
DFG mapped to HyCUBE, n/ is still on FO in cycle 0, but
now all its dependent operations n2, n3, n5, and n6 can be
scheduled in cycle 1. For example, the edge nl to n5 is routed
through the path PEs 0, 1 and 3 in a single cycle. Because
the interconnect supports multicast, the same data can be sent
to multiple destinations simultaneously without duplication.
As a result, the II drops to 2 cycles, improving throughput
and PE utilization. HyCUBE was fabricated in a commercial
40nm technology [41]; our test chip delivers a peak energy
efficiency of 26.4 MOPS/mW and consumes only 290 pJ per
operation. The RTL of HyCUBE is open-sourced to enable
further exploration and insight into the architecture.

HyCUBE solves a fundamental bottleneck in CGRA design.
It decouples routing from computation and gives the com-
piler fine-grained, cycle-level control over communication
paths, all while preserving the energy and area efficiency
that makes CGRAs attractive in the first place.

1) Microarchitectural Features

HyCUBE features a 4x4 array of PEs, each equipped with
an ALU, local configuration memory, and a crossbar switch.
The leftmost column consists of memory-capable tiles that,
in addition to computation, include load-store units (LSUs)
connected to a shared 4-port data memory, while the remaining
tiles are compute-only. The architecture’s key innovation lies
in its compiler-scheduled interconnect: every PE’s crossbar
output is driven by clockless repeaters that can be statically
configured to bypass or latch data across directions (N, E,
W, S). This allows data to travel across multiple PEs in a
single cycle without using the PEs in between for routing.
The interconnect supports multicast from a single source to

multiple destinations within a cycle. This results in an extremely
lightweight interconnect, made possible by relying entirely on
compiler-determined routes and avoiding the complexity of
dynamic routing or flow-control mechanisms. All connectivity
is reconfigured cycle-by-cycle via instructions stored in each
FU’s local configuration memory, making the interconnect
highly efficient in both area and power.

HyCUBE eliminates the need for a centralized register file
by using distributed registers placed at each directional input.
Operands are sent straight to the ALU inputs, or temporarily
stored at input registers if needed, which avoids extra move
instructions and simplifies control. HyCUBE also supports
predication for handling control divergence without requiring
explicit predicate registers. Each ALU includes three input
registers, two for operands and one for the predicate signal, and
each operand includes a predicate flag. Execution occurs only
when both predicate in the operands and the predicate input
evaluate as valid, and downstream SELECT operations resolve
control paths. To support cycle-accurate control, HyCUBE
adopts a statically scheduled loop execution model. Thus, each
PE’s configuration memory is required to store one instruction
per cycle over the II, with instruction contents specifying ALU
operations, crossbar settings, register accesses, and constants
necessary for correct execution.

2) Compiler Support

HyCUBE'’s reconfigurable interconnect architecture neces-
sitates a compiler that considers cycle-level communication
paths in addition to traditional operation scheduling. In modulo
scheduling for CGRAs, the compiler constructs a MRRG by
unrolling the spatial architecture over a candidate II, replicating
FUs, registers, and interconnects across time steps. The MII
is computed as the maximum of the resource-constrained
(ResMII) and recurrence-constrained (RecMII) bounds [32].
In traditional CGRAs, data dependencies between distant
FUs are mapped as multi-cycle paths through intermediate
FU nodes, which are temporarily occupied for routing. In
contrast, HyCUBE introduces cycle-level reconfigurability in
the interconnect, requiring the MRRG to explicitly model
links between FUs as schedulable resource nodes. These links
are used for single-cycle, multi-hop paths that connect FUs
mapping source and sink nodes directly, without involving
intermediate FUs.

HyCUBE leverages key components of the Morpher’s
infrastructure for its compiler-to-hardware integration. The
architecture is described using Morpher’s ADL primitives.
HyCUBE also provides a custom ISA specification, which
Morpher uses to automatically generate cycle-accurate configu-
rations and bitstreams for each PE, along with test vectors for
functional simulation. Morpher further outputs initial RTL
based on parameterized modules, which is used for early
evaluation of area and power metrics through commercial
synthesis tools. While final deliverable RTL and full backend
implementation for tapeout required additional engineering ef-
fort, Morpher’s modular infrastructure significantly accelerated
initial development and system-level validation.
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Fig. 6: PACE: CGRA integrated in a RISC-V system-on-chip
(SoC)?

PACE [24], [25] is a fabricated chip implemented in a
commercial 40nm technology node, achieving a peak efficiency
of 360 GOPS/W at 0.6V. It extends the HyCUBE architecture
by scaling from a single 4x4 CGRA cluster to a 64-PE
(8x8) CGRA integrated within a RISC-V-based SoC. The
PACE SoC features a 32-bit RISC-V core that manages
execution by coordinating data transfers to the CGRA’s data
and configuration memories, and updates control registers
through interrupt-based signaling. Each PE features a 16-bit
ALU, 0.25KB of compiler-managed configuration memory,
and a statically scheduled, multi-hop crossbar interconnect.
Compared to HyCUBE’s 32-bit datapaths, all PEs in PACE now
use 16-bit datapaths, better aligned with modern Al workload
requirements. The CGRA is partitioned into four interconnected
clusters, enabling efficient and seamless data communication
across cluster boundaries.

To support real-world embedded workloads, the PACE SoC
integrates a broad set of external peripherals and memory
interfaces. As shown in Fig. 6, the SoC includes an on-chip
SRAM and a memory controller that interfaces with an external
32MB SDRAM chip for handling larger data storage require-
ments. For peripheral interfacing, the SoC includes standard
communication protocols such as UART, SPI, and I12C which
connect to off-chip components including a bluetooth module,
SD card controller, and I2C ROM. Additionally, dedicated ports
are provided for general-purpose I/0 (GPIO), analog-to-digital
conversion (ADC), and cryptographic acceleration via AES
and RNG modules. These components are accessed through
a shared AXI4 slave multiplexer, providing a uniform MMIO
interface to the system. This rich peripheral set enables PACE
to support diverse I/O and memory-intensive tasks, making it
suitable for real-world edge computing workloads.

PACE further improves its energy efficiency compared to
HyCUBE by employing both static and dynamic clock gating.
Static clock gating is applied at compile time by identifying
periods where specific PEs are idle and disabling their clocks.
Complementing this, dynamic clock gating contributes to an
additional 10% power reduction through the insertion of idle-
state instructions and associated gating logic, as shown in Fig. 7.
The compiler inserts NOP instructions to specify intervals

3Adapted from PACE [24], [25].

during which certain PEs remain idle. These instructions encode
the start and end times, allowing local counters within each
PE to track the idle period precisely. When the counter is
active, the clock to most of the PE’s internal logic is gated,
excluding critical components like the routing logic that must
remain functional. After the counter expires, the PE resumes
execution as scheduled. This compiler-coordinated approach
allows fine-grained, cycle-accurate clock control that exploits
the dataflow execution model, maximizing energy savings.

D. Morpher has enabled broader research in CGRAs

The CGRA design space remains rich with open problems
and optimization opportunities across the stack ranging from
improved DFG generation tailored to memory access patterns,
to enhanced backend compilation involving mapping, place-
ment, and routing, and even the design of novel architectures
better suited to specific classes of kernels. Morpher has, in
part, enabled several research efforts across this spectrum.

REVAMP [4] is a design-space exploration framework
that leverages Morpher’s ADL to instantiate heterogeneous
CGRA configurations. It employs Morpher’s DFG generator
to extract dataflow from annotated C code, and extends
Morpher’s compiler backend with its own customized toolchain.
LISA [21] builds on Morpher’s compilation flow by replacing
its simulated annealing-based mapper with a GNN-based
labeling and mapping strategy, generalizable to a range of
spatial accelerators and CGRAs. Nexus Machine [17] and
Canon [3] both utilize Morpher’s DFG generation infrastructure
to compile arbitrary application kernels for their respective
fabrics. Morpher and HyCUBE have also provided impetus to
other CGRA architectures [12], [13], [22], enabling exploration
of ideas such as multi-hop routing to improve compilation
efficiency and flexibility on their fabrics. CTScan [39] is
another interesting work that leverages CGRAs to emulate
power side-channels of edge CPUs. It leverages multi-hop
capabilities of the PACE CGRA chip to emulate data forwarding
across CPU pipeline stages. Prior works in CGRAs [12],
[22], [26] have been modeled in Morpher for better insight
into various architectural features. Broadly, Morpher’s DFG
generation, compilation flow, and ADL form a robust research
infrastructure, enabling researchers to benchmark, ablate, and
contrast their contributions or innovations against prior work.

IV. EXPERIMENTAL STUDY

This study demonstrates how Morpher can be used to not
only accelerate kernels on CGRA-based systems but also
is supporting architecture design space exploration. It also
highlights the importance of supporting control divergence and
recurrence edges.

A. Mapping Quality of Morpher

Benchmark Kernels: We use kernels from a range of
popular benchmark suites, including MachSuite, Polybench,
Wavelib, and BEEBS, spanning multiple domains and compris-
ing commonly used edge kernels for image processing, filtering,
machine learning, and basic linear algebra. Benchmarks with a
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App. Kernels | 1-hop | 2-hops | 3-hops | 4-hops

fft 11 5 5 5
adpcm 17 9 9 8
aes 24 15 13 13
disparity 26 12 10 11
dct 23 14 13 13

nw 19 15 15 15
GeMM 14 9 8 7

TABLE III: Impact of multi-hop interconnects on CGRA
performance.

small number of graph nodes can be mapped onto the spatial
CGRA without partitioning; for such cases, we additionally
evaluate unrolled variants (_u) to provide better insights.
Baseline Architectures: We evaluate spatial and spatio-
temporal CGRA variants from the earlier taxonomy in Fig. 9.
The spatial and spatio-temporal architectures are modeled
after Snafu [12] and HyCUBE [18], respectively. Across
all benchmarks, the spatial architecture exhibits an equal or
higher II than the spatio-temporal counterpart, trading some
performance for lower power by eliminating configuration
memory. Table III quantifies the impact of introducing multi-
hop interconnects into CGRA compilation. With two hops, the
CGRA already shows performance gains across benchmarks;
with four hops, the improvement frequently exceeds 50%,
owing to the additional routing freedom and flexibility.

B. PACE SoC evaluations

We measured the PACE silicon across 0.6-1.0 V. CGRA
power scales from 4.4 mW at 0.6 V to 43 mW at 1.0 V as
shown in Fig. 10(a), while the maximum clock increases from
21 MHz to 105 MHz (Fig. 10(b). Energy efficiency peaks at
360 GOPS/W at 0.6 V/21 MHz and decreases toward ~154
GOPS/W near 0.95-1.0 V as dynamic power grows faster than
throughput (Fig. 10(c). These curves illustrate the expected
energy-performance trade-off and motivate operating near 0.6-
0.7 V for energy-limited edge deployments, or near 0.9-1.0 V
when throughput dominates.

The fabricated SoC (40 nm) occupies 7.6 mm?, as shown
in Fig. 8. As shown in Fig. 11(a), system-level area splits into
RISC-V controller 42%, on-chip SRAM 24%, and CGRA
34%. Within the CGRA, area is dominated by PE logic
(ALU + control) at 42%, followed by data memory at 29%,
PE configuration memory (CM) at 21%, and routing at 8%
(Fig. 11(b). Power attribution shows a different balance: CM
accounts for 52% of CGRA power, with PE controller 23%,
router 14%, ALU 8%, and data memory 3% (see Fig. 11(c).
Configuration memory, though modest in area, consumes the
most power because the CM is read every cycle to configure
ALU, router, and register controls for all PEs.

Amber [11] | SSCL [37] | ISSCC [36] | JSSC [29] | PACE (Our work)

Year 2022 2020 2019 2020 2023
Tech (nm) 16 28 22 28 40
Area (mm?) 20.1 39 49 480 3.02
#PEs 384 120 15 64 64
Voltage (V) 1.29 0.6 0.48 0.9 0.6
Freq (MHz) NA 89 46 800 21
Power mW) NA 759 NA 537 1z
Efficiency (GOPS/W) 538 307 978 19 360
Memory 4500KB 234KB 690KB 320KB 80KB
Norm. area (mm?)! 50 55 3.2 6.86 3.02
Norm. efficiency (GOPS/W) 86 150 296 96 360
2
1 Norm. area = Area - nge ; 2 Norm. efficiency = Efficiency - ( node ) .
nm 40nm

TABLE 1V: Comparison of this work with prior designs®.

Table IV compares our CGRA with prior published designs,
with efficiency and area normalized to 40 nm to account for
process differences. To isolate architectural effects, we disabled
workload-dependent power-saving features (e.g., idle-state
clock gating) during measurements. Under these conditions,
the CGRA achieves 360 GOPS/W at 0.6 V, exceeding prior
work by 1.2x-4.6x on the normalized metric, and occupies
3.02 mm? (normalized) for the 64-PE array. Beyond peak
numbers, the architecture and compiler support a broad mix of
kernels and can execute multiple distinct kernels concurrently,
indicating greater versatility.

V. TOwWARD A UNIFIED ABSTRACTION LAYER
FOR SPATIAL ACCELERATORS

Morpher seeks to unify a landscape of highly specialized yet
fragmented CGRA architectures, but a considerable amount
of work remains to fully realize this vision. Its ADL, while
detailed, must be extended to capture a wider spectrum of com-
plex and programmable architectures. It remains constrained by
a set of supported network topologies, PE types, and memory
banking schemes. For instance, the current PE model is limited
to a composition of an ALU, a router, and a register file,
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whereas more sophisticated architectures may incorporate PEs
with various IP blocks, coarser-grained compute cores, caches,
or more intricate interconnects. Moreover, the ADL’s verbosity
imposes a barrier to intuition and creates friction for non-
experts attempting to specify architectures.

Morpher framework also lacks programming abstractions
that would allow both expert and non-expert users to manually
explore architectural or mapping optimizations at a granu-
larity aligned with their expertise. Moreover, its supported
architectures primarily target kernels with regular computation
patterns and employ a high control-to-compute ratio to preserve
generality, resulting in inefficiency relative to domain-specific
accelerators.

These challenges motivates a vision for a unified abstraction
layer that decouples hardware specialization from software
development. In essence, we seek a generalized and common
intermediate representation (IR) of spatial computation and
communication that remains consistent regardless of the under-
lying accelerator, allowing software to target a virtual spatial
architecture rather than a particular accelerator implementation.

Applications will be first lowered from high-level lan-
guages or Domain-Specific Languages (DSL) into this virtual
spatial IR. Subsequently the IR is mapped to a particular
accelerator through target-specific back ends that perform

mapping, scheduling, and routing to generate device configura-
tions/bitstreams. A common IR allows front ends and back ends
to evolve independently. The back ends would be parameterized
by a declarative architecture specification as an extension of
Morpher’s ADL of modules, ports, and connections so that the
same IR can be retargeted without per-device rewrites.

An architecture independent intermediate representation (IR)
for spatial computing would decouple software from device
details and enable portability: developers can write kernels once
(for example in Triton [40]) and run them on many CGRAs and
related accelerators that implement the common IR. Hardware
designers can still innovate in PE organization, interconnects,
and memory systems without rebuilding the software stack.
This separation acts as a stable interface between software and
hardware, built on a small set of composable spatial primitives
with precise semantics, which extends the lifetime of compilers
and tools [43]. A shared IR would also focus compiler work
on the common layer, instead of writing new mappers and
schedulers for every architecture, as shown by MLIR dialects
that decouple CGRA compilation from specific back ends [42].
With this foundation, optimizations for dataflow orchestration,
pipelining, and parallel scheduling can be written once and
reused across devices.

More importantly, making the abstraction open and modular
would establish a scalable foundation for spatial computing.
An open standard invites community collaboration: academic
and industry contributors could align on interface definitions,
contribute to common libraries, and collectively drive improve-
ments. Over time, such a foundation can evolve to incorporate
new hardware capabilities (e.g., novel functional units or
memory models) while preserving backward compatibility,
much as extensible ISAs like RISC-V have done for general-
purpose processors. We envision that embracing a unified,
open abstraction layer will transform the spatial accelerator
landscape into a more portable, innovative, and sustainable
ecosystem, combining the efficiency of specialization with the
flexibility of a shared, interoperable infrastructure.
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